大学受験なら東京都渋谷区の予備校「aps」へ!合格エンジンつけます。

平日・土曜・祝日/13:00-21:00 日曜/13:00-18:00

0120-428-852

お問い合わせ

  • このエントリーをはてなブックマークに追加

高校数学の落とし穴(基礎編)第26回

2016年2月19日

黒板 小

高校生がよくやってしまうNG解法と、正しい解法(または効率の良い解法)を紹介していきます。

 

★☆☆ 《レベル1》

*************************************************************************

問 9人を3つの組に分けるとき、3人ずつ3組に分ける方法は何通りか。

*************************************************************************

 

<解答または解答方針>

※ 記号:nPr は「順列」、nCr は「組合せ」とします。

 

【NG】:のろちゃん

9人から3人選ぶ方法が9C3(通り)で、残りは6人となる。

6人から3人選ぶ方法が6C3(通り)で、残りは3人となる。

最後に3人から3人選ぶ方法は、1(通り)であることは明らかだから、3C3(通り)と書

かなくてもよい。

9C3・6C3・1 = 1680(通り)×《誤答》

 

【正解】:こたろう君&もんじゅ先生

1680(通り)は、「9人を3人ずつA、B、Cの部屋に分ける方法」の場合の答えです。

これは間違いです。

9C3・6C3・1 の計算では、イメージ的にいえば無意識に時間差によるグループ分けが行われています。

一番早く選ばれた3人 →最初のグループ。

つぎに選ばれた3人 →つぎのグループ。

最後に選ばれた3人 →最後のグループ。

これらはつぎのように言い換えることが出来る。

はじめの9C3(通り)で選ばれた3人はA部屋に入る。

つぎの6C3(通り)で選ばれた3人はB部屋に入る。

最後の3人はC部屋へ入る。

実際は、A部屋、B部屋、C部屋の3部屋へ入れる方法ではなく、グループ名を付けずに単に3グループに分ける方法を求めたい。部屋のドアにある名前を消しても駄目です。部屋は物理的な位置から区別されるものです。

では、区別を無くすにはどうするかです。

例えば、3つの異なるグループから3つ選ぶ方法が3C3で、さらにグループ名A、B、C

を付ける方法を加味すると3C3・3!(通り)となります。この状態がのろちゃんの求めた

ものに相当します(似ています)。つまり、グループ名を無くすには3!で割り算すればよ

いと分かります。3P3 / 3! = 3C3(通り)このしくみを利用すると、求めるものは、

9C3・6C3・1 / 3! = 1680 / 6 = 280(通り)《答》

 

>>> 一言アドバイス <<<

組合せと順列の相互関係 nCr = nPr / r!

 

個別説明会のお申し込み・お問い合わせ

電話でのお問い合わせ

平日・土曜・祝日/13:00-21:00 日曜/13:00-18:00

0120-428-852